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RECEII@ WORK Ol!lAIBI’0111 THEORY

By L., PrandtZ

I ohould liko ia the follovinq to report briefly on
several papers which have ~ppeared in Ggttinqen durin% the
last three rears.

I. In the computatlonnl treatment of the lifting sur-
face , proqress has %~en made %y starting out - not from a
bound vortox dj.strlbution on the surface With the associat-
ed trailing vortex shget - hut from tho nccoloration 7octor
field in the nelqhborhocd of the surface (reference 1).

Ilv
Sinco the acceleration vector ~~, accordinq to the duler

equatlori, is equal to - * grad p nnd t50 latter expres-

sion for the cage of homoqemelty of the medium, with com-
pressi%illty considered. cm be rritton equal to - grad

J dp
—9 the accoleratlo~ vector possesses a poto?ltial Cp,
P

for which there is obtained, by an Integration of the Euler
equation:

(1)

For tho stationary stnto, and also for tho nonstationary
case, if the flow at iafidt~ is free from dieturhances, we
h~vo In cdditlom, f($) = constnnt. Thus there exists a
Verr simple relation bet~c~n th-e preswuro field and the
“.acceleration motentlal.n Sinco the pressure is discontln-
uousi only at t~o liftinq ~urface nail is continuous over~-
mhero else, the sane nust hold. true for the nccelesation
potential.

II. ~ero tho ‘linenrlzodli theory 1S employed (dis-
turbance velocitioe evory~her~ sm&ll as conpa~od with tho
fliqht veloclty V), as is custon-ary in the troatmcmt of
airfoils, we have;

—— - .——.——.

●“Ueber n.euere.Ar%eiten zur !l!heor~e der tragenden ~l~che~”
From’Proc’eedinqs of the ~Sfth International Congress
of Applied Mechanics. Wm-irl-d%8, Mass? , Sept. 1938.
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or, substttutinq the ~olocity potential ‘0, and tho accel-
eration potential ~:

from which. iatorchanginq differentiation and i.nte%ration,
.

(3)

~osEib10 to ob-

O(x, y, z) = + C/9(X’, Y, z) ~.xI (4)

But also in the qonernl case, @ can bo computed for %iren
~ (x, 7, Z, t) b;’ c~ intoqrntion of (3). It is nocessnry
to into%rr.to tho ncceloration potentials i~prossed on each
fluld particle:

A@ (x, Y, z, t) = p r( x-x ‘
qJx’, y,z,t—— v ) ax? (4a)

CJ

The shapo of tho liftiny surface z = z (x, y, t) cm be oh-
t-lnod from the verticnl (do~wash) velocit~ w = 3@/~z, from

the condition * = ~
ax v for the stationary case, or fron

WZ+laz w
ax .—.Tv at

for the nonstationary case b~ a second quad-

rature of the sano type. Zor the nonstationar~ case tk.ere ‘
is obtained:

x

z .1
J (

x-x f

v
mx’, y,o,t-~ ) (

&r + ~ y, * “;
)

o’
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The arbitra~ function F takes care of “an arbitrarF lift--.
ing above the x,-y plane of the wing leadin~ edge, and
likewise of an arbitrary vert~cal motion of the Latter..

The vortex sheet does not appear in the above formula-
tion but, of course, exists as is readily seen from (4) or
(4a)~ If oonstderation is given to the fact that ~ is

. discontinuous at the airfoil and hence in the above inte-
gral expressions, these disoontlnuities also show up behind
the airfoi3..

\

III.
EqmrWAl!l+

In our considerations thus far, the ~
has not bsen taken into account. In the l~nearized theory,
it follows from equation (3) that for reasons of continuity
the same differential equation that must be satisfied by 0,
Dust also hold for p. For the incompressible nedlum, we
thus have, sanply:

For the aonpressiliile nedium we ~ave in the stationary case,
if the above linearization is aqaia appIied,

(+)%+%+2’=” (5a)

where c is the speed of sound.

With the aid of (5) or (5a), the solution can now be
built up lIy the ‘dou%let distr~butionn principle known in
the electrical theoryx A source potential @Q can first

be obtained ~ distributing sources proportional to the in-
teneity of the desired “pre.ssurq discontinuity At the air-
fo~l. or at the nefqhboring portion of the x,y ylane where,
for each source at a polat x~, y~, O, there is to be sub-

stltutqd the sin-&zl”ai solution corresponding to differen-
tial equation (5)’ or-(5a); thus,, In-the incompressible case,
the solution aonst/r, where

The potential of the eource didtr~bution on the unit eur-
face then becomes .

(6)
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where Q lS the source intensity.

!lJoobtain the velocit? potential ~, it is necessary
to pass from the source to the dipole, which can be done
by

(7)

IV. Unfortunately, in nan~ applications of the above
equations, difficult~e~ arige In carr~ing out the intO%rP

tions, so that St is neceqsary to ~roceed ?)Y the converse
nethod, nanely, to ftnd homdaries of the llftinq surface,
for which computed source Totentlals are ulready available.
An arbitrary g~urce distribution can then bo built up in
the fern of a series of such snurco potent~als.

In the incompressible cas9, tho procedure has actually
been applied for the airfoil with circular plan form. The
very conplete solution was obtained 3y W. Kinnor (reference
2), who applies elliptic coordinates so that 11 is con-
stant on confocni ollipsolds ,of revolution, nnd t.b is con-
stnnt on the corresponding confocal h~er%oloids (see fig.
1), * denotinq the azi~utk. In these coordinates, the
equation Ag = O is satlsflod Sor ali

v;=P:(IJ {(in) COG Dd,
m

where P and Q:
n

denote, rospoctively, tho spherical harnonics (ascociatod
Legondre functions) of the first and second kind. Ifn+n

iS odd, ~~ has a dlscontinuit~ of a typo-useful for our

purpose in the x, y plane within tho circle.

With the above functions which tend to zero on the
boundary of the circle, and hence give fidlte velocities
there, it is possible to treat cases with iapact-free en-
trance of the flow but not, for oxanpl.e, th~ cmse of the
flat , circular disk set at an angle tn the flow direction -
for which case, infinite velocities arise at the leadinq
edge. For this purpoee it is nocosso.ry tn enploy additional

.

specir.1 functions gn, which aro obtnined fron #n+ 1 by a

suitable difforontiation i>rocOss. We have.. .

‘% = -J+~ (l--J’a Coeil

.— ---- —-. . . . . --- — --- -- .)--.— --- ---- . .. . . .
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The ~n functions bocomc infinite ovor the entire boundary

of the circle And therefore do not satisfy tho flow condi-
tion at the traili’nq edqe where,
tion,

according to this condi-
the disturbance velocity nust remain finite. It is

possi%le, howe-ror, fron the infinitely.nany functions

v: and. Cpn to find such a, linear combination that, first,

the vertical vcloci,ty w is constant in the interior of
the circle and, secondly, that the contributions at the
trailing edq.c which becone infinite, balance each other, as
is possible with the F~uricr series. By a combination of
the solution for the flat circular disk vith the previous
solutions, the anqlc-of-attack variation of any cambered
circular surface rlay also be treated. ,

The results Of this theory have been checked in the
wind tunnel for lift , drag, and pressure distribution by
M. Han sen , for flat circular “plates, spherical se%ncnts, and
an S-cambered surfaoe with fixed center of pressure. The
theoretical drag l’t~ is, according to the Munk staqqer the-

orer., identical with that of the loaded line. The inteqral
of the pressure distribution over the loaded surface, hom-
ever, ?ives a <rester drag ris vhi ch, on addinq the SUC- .

tion force at the leading edge, reduces to the value of ~L .

Since ‘at the edges of thin plates the suction force cannct
actually be fully developed, the value of the true drag
iics bettveen WL and Ws , lyinq nearer the one or the
other value, according to the deqree of rounding of the
edge. The surface with fixed center of pressure (fiq. 2)
has been so designed %y Kinner thnt, at sone anqlc of at-
tack the flow at the entire leadinq ed~e is without inpmct.
At this anqle of attack, therefore, WS and ~L aqrse.

.The entire theory holds only for ~anishj.ngly small an-

qles..of attack. Deviations of increasin% na~;nitude are .
therefore *o’ be expected ;Vith, increasin~ anqle of attack.
These appear clearly in the pressure distr’ihutioh and,’ nAt-
urally, ,also in the values of the lift an’d drag. If ~~1

the circumstances nentioned are taken into account and con-
sideration is also gi~:en to the fact that actually the test
surfaces c,nn only bc d~si~ned ~iijh fir.itc thickness , where-
as the theory assuaes infinitely thin airfoils, the agree-
nent of the results given in figures 3 to 5 nay be roqarded
as satisfactor,yq

v. An investi:,ation in which the problem Sor the air-
foil with elliptic plan fern is to be solved with the aid
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of ellipsoidal .harnonic functions, is-now beinq conducted
and likewis~, n, computation on the nonstationary problem of
the vertically. flappiag circulaa disk. In the first proh-
len, the lack of certain tables of functionn led.to dlffi.-
cul”ties, wh31e in the second tho conputetion n’ppeors to
proceed sneoth~y, at least to a Sirst approxlnation for
snail frequencies.

The s tationn,ry solutton for the rect-gular alrfbil
is naturall~ also of in~ortance. Thfls problcn hns preTi-
0.us17 been investigated h~ H. Blenk (reference 3) by a dif-
ferent nethod which, hcwe7er, is a~~l:cc.ble onl~ to lar30
asp~ct-rat~o wlzi~s .(s~cll win% chord), for =h%ch ,in ZIOSt
.cppl&catioas the “loadbd-line thecrF is fouqd to be:.euffi-
c.i6n.t. “ It”would therefoid~be of consi?.etiable interest to
obtal’d.i t~eory for the rectangular airfoil cf sr.nll nspect
rhtio~ ~nfort~nate~~; hO~e~er, it appears that the ex- :
presslons in equatiOa#. (6.) cnd (7) 3i~e rise to ipsurnnunt-
eble integration difficulties. The author has therefore.
directed. n co~putation to te na3e which is based on the
prlnciplbs.of the old airfcil theory ncd zudzea use of a
large nunfier of loaded lanes lyimq one behtnd the other.
The case offour EIuch lomfled Itms tias.first conputed, the
lift distribution bf”each. of these llnek bei.~% ;iven by a..
three-tern expres~i”on and the kinona.tic conditzon dz/dx =
w~v, being satisfied for discrete p~ints %atweec the lines.
A side investi~atioa showed that the accurncy of the conpu-
tatioa. becomes particularly good if the lines are each 10-
catod at 1/4 chord of the surfaco strips, tnto which the
loaded surface is ditided, nnd the points at which the ktn-
enatic condition Is satisfied are chosen at 3/4 depth OZ
the strips. Our coworker, K. .Wio%hardt, ccmputed the square
plato as a nqmorical example, and found thr.t tho ?.istrihu-
tio.n did not deviate much fron the elliptic on azy. of the
loaded lines. On tho basis of this result nn?l on tho as-
sumption t~t the spanwi.so lift dlstributiofi was accurnto-. .
l,y ollipti.p, .-healso tr?ated tho problen for .an i.nflntte . .
‘nun~or of loaded lines, t~!mre it was now required tXat :the
ki.nenatic cm.u$~tion w = const, ho satisfied in the center
section oqlyj Fdr “t~o clm’r.dwisd lift Mstrilhztiono ‘which is
.representefi by the velocity “d~scont.~nuity ?(x), An inte-
~r+ equation”.ms now obtained, nambly,

. . .
. .

.. .
+1 r . . . . .

f{ (
;(XLJ’ ‘+ As.E . . ‘m$A )}n———. — . —

xl R~.. :.. --m .5 + z“ +(X) dx =

-1 ‘WA
:.. ....L

..,.
2TT A. V sin a
..

.

. . . .
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for all Xt tietwceh’ +1 and. -l,. A ~einq tho mspe”ct rntlo
. . “-“”b/%# E .ti~e,olldptic intoqral. Tho solutibn of.t~is *n-

tegral e uation WAS ~o’ssl%le only b~ nubqri”oql nbthods.
?Eor ‘Y(x , -an expression nade up of four llBirn.~&& fiiilb-’

ti.onsllwas choson cad the inteqral equation sattsfied at
fmour points. !Che required. quadrature had to be mrried

“out numerically. This.computation qaye for the various
aspect ratioa the pressure distributions at the center sec-
tion shown in fi%ure 6. I!he aqreement of the lifts deter-
rn”inedfrom these pressure distributions with the test re-
sillke was quite satisfactory, particularly at the small aa-
pOct ratios.

VI. With compressibil~ty taken into a~count and for
subsonic speeds, the .analog~ already %iven by the author.
(reference 4) nay be directly applied to the precbding re-
sults obtainod for tho inconpressiblo flow. It is neco8-
sary to write in fofiqula (6), instead of the previous valuo
of r, t~o value

J.

.— .———. --—— —

.r = (x .- X’)a
+ G -5) ‘(g - “’)a+ ‘a)

hence the spaco filled With t~o compressi%lo flow can be
set to correspond with an “afflne space filled with a corre-
sponding incorrpressihle flow by rgducing all dimensions in
the d~rection of tho x axis: for exanplo, in the ratio
1- Ta/ca, whllo .tho dimensions in the y and .z diroc-

.tlons remain unchan<od (Prandtl-Glauort rule).

The cr.se of gupOqsonic velocit~ wag treatqd in detail
by H. Schlichtiag (rofer&co 5) by the ndw nethods. It Wa6
here possi31e to SOIVO completely the CaSG of thp flat rec-
tangular plate - with tho robtriction, howo~ero that tho
disturbance reqionp. WILiC~ ~pread out at both side odgos un-
der the Mach angle an not Overlap..on the surface. The C021-
sidorationa which have led to fo.~ula (6) can here bo ap-
plied aqain ‘by sottinq in tha formula

.“.

f“
d. ——

r .= (x -, X?)a.“G-1)””- ‘~-
. .

qhb values are renl only ~th~n a d~u~lo cone with tho vor-
1 tex at xl, yt,” 00 while outside they aro im~inar?. Tho

physical sense requires, howover, that Q(k:, TS) should

.- . .-—-.—- . .—.. - ——.- —— —
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contribute onl~ in the after cone, while-in tho forward
cone and in the outside region l/r riust be set identical-
ly equai to zero. In order that the forward cone should
drop out, It is necessary to add s factor 2 to the after
cone. ,

The supersonic problens mre sinpler than the incon-
prossible flow and subsonic prcblens, in thmt nt the lemd-
~ng edqes no flow arises with Infintte velocity (and hence
noz suction force); also, at the” trailin% edqes no pressure
difference npproachinq zero is required. Practical partial.
solutions even with the simplest ,inteqral functions are
therefore obtaine~ for tke distribution of the lift density.
Thus Schlichtinq, for ex~.nple, has computed the volocit~
fields for the uniformly loaded rectan~ular, triangular,
and trapezoi&l wi~qs. The trapezoidal wing constitutes nn
important preliminary work for the theory of the Slat roc-
tanqular plate set at angle a to the flow direction. In
this case the followin~ situatiofi is obtninod (fig. 7).
In a trc,pesoid ABFE, ~hose sides AE and W are in-
clined at the Mach anglo p, tho lift donsit~ is constant,

b.oing equal hpproxinntel~ to 4“ a tan B pT%/2 “ (whore the
Mach anqle a is qiven by sin a = c/vi . go~.~ardthe side

. edges the drop takes place in such a manner that n,lonq each
straiqht line inclined at QQ an~le cp, for exnnple, BG,
the lift densitv is constan$o The entire lift distribution
can therefore be built up by p. s-aperpositio~ of a lar~e
nunber of unifornl:r loaded trapezoidal winqs rith various
angles q. In the limit thiz leads to a~ i~tegrcd equation
which - by n substitution found by 1. Lotz - can finally be
Brou%ht to the followin% fern: Lot d = t~-nq)/tan a, and

f(#) be the lift density nee.sured at tho .anqlo ~ ia the
trapezoid-shaped center field. Tken

6=1

F(d) +~
J

v(e) F(d,e) d6 = 1l-r .

with

F(d,e)

0=0
d’=il

=
J

$ =i

r ———.
l-tl’a dd:- --—

The inteqrnl equktiba is to be solved for the boundary con-
ditions f(d) = O for d = O nnd f(d) = 1 for d = 1,.-
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The solution has been” c&ied out nunerlcally by Miss I.,. . . .
Lot% and J.. Pretsch, ln ,r~ferenco 5. Fi3ure 7 qivos the rO-
sults of the computation.

-,., ........ . . .-

SUMMARY

The baste j.doss of a nOw nothod for treatinq tho pro%-
Ien of the air”foil are presento~, and a review is %iven of
tho prohlens thus far conputpd for i~conpressible and super-
sonic flo.ms. Test results nro reported for the airfoil cf
circular plan fern and tho results ,nre shcwh “to ckqrco well
with tho theory. As a su~plonent, 4a theory hasea on the
older nothods 1S progonted for tho rectangular rin~ of
small aspect ratio.

Translation by S. Roiss,
National Adv2sory Connittoe
for Aeronautics.
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Figure l.- Elliptic coordinates
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Figure 6.- Lift distribution in the
center section of large

chord flat rectangular plates, after
K. Wieghardt (~= aspect ratio).
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~igure 2.- Surface of circular
plan form with fixed

center of pressure, after W. Kin-
ner (flow from the loft).
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~iguro 5.- Polar curves of flat
circular diaka with

rounded leading edge.
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?igure 3.- Pressure distribution
over flat circular disk

set at an eagle(the meamred values
are divided by the dynamic presmre
qandtanct).
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Figure 7.- Prese”e distribution
on the flat rectangu-

lar plate at muperconic speeds.
after H. Schlichting and I.Lots.
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rigum 4.- Lift
coefficient
of circular
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●m ● function
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of attack.
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